-
1 initial power level
Космонавтика: начальная мощность -
2 initial power level
Englsh-Russian aviation and space dictionary > initial power level
-
3 level
уровень; нивелир; величина; выравнивать, нивелировать; иметь величину; находиться на уровне; горизонтальныйflight level 370 — высота полёта [эшелон] 37000 футов (11300 м)
level of pilot knowledge — уровень знаний [подготовки] лётчика
-
4 modular data center
модульный центр обработки данных (ЦОД)
-
[Интент]Параллельные тексты EN-RU
[ http://dcnt.ru/?p=9299#more-9299]
Data Centers are a hot topic these days. No matter where you look, this once obscure aspect of infrastructure is getting a lot of attention. For years, there have been cost pressures on IT operations and this, when the need for modern capacity is greater than ever, has thrust data centers into the spotlight. Server and rack density continues to rise, placing DC professionals and businesses in tighter and tougher situations while they struggle to manage their IT environments. And now hyper-scale cloud infrastructure is taking traditional technologies to limits never explored before and focusing the imagination of the IT industry on new possibilities.
В настоящее время центры обработки данных являются широко обсуждаемой темой. Куда ни посмотришь, этот некогда малоизвестный аспект инфраструктуры привлекает все больше внимания. Годами ИТ-отделы испытывали нехватку средств и это выдвинуло ЦОДы в центр внимания, в то время, когда необходимость в современных ЦОДах стала как никогда высокой. Плотность серверов и стоек продолжают расти, все больше усложняя ситуацию для специалистов в области охлаждения и организаций в их попытках управлять своими ИТ-средами. И теперь гипермасштабируемая облачная инфраструктура подвергает традиционные технологии невиданным ранее нагрузкам, и заставляет ИТ-индустрию искать новые возможности.
At Microsoft, we have focused a lot of thought and research around how to best operate and maintain our global infrastructure and we want to share those learnings. While obviously there are some aspects that we keep to ourselves, we have shared how we operate facilities daily, our technologies and methodologies, and, most importantly, how we monitor and manage our facilities. Whether it’s speaking at industry events, inviting customers to our “Microsoft data center conferences” held in our data centers, or through other media like blogging and white papers, we believe sharing best practices is paramount and will drive the industry forward. So in that vein, we have some interesting news to share.
В компании MicroSoft уделяют большое внимание изучению наилучших методов эксплуатации и технического обслуживания своей глобальной инфраструктуры и делятся результатами своих исследований. И хотя мы, конечно, не раскрываем некоторые аспекты своих исследований, мы делимся повседневным опытом эксплуатации дата-центров, своими технологиями и методологиями и, что важнее всего, методами контроля и управления своими объектами. Будь то доклады на отраслевых событиях, приглашение клиентов на наши конференции, которые посвящены центрам обработки данных MicroSoft, и проводятся в этих самых дата-центрах, или использование других средств, например, блоги и спецификации, мы уверены, что обмен передовым опытом имеет первостепенное значение и будет продвигать отрасль вперед.
Today we are sharing our Generation 4 Modular Data Center plan. This is our vision and will be the foundation of our cloud data center infrastructure in the next five years. We believe it is one of the most revolutionary changes to happen to data centers in the last 30 years. Joining me, in writing this blog are Daniel Costello, my director of Data Center Research and Engineering and Christian Belady, principal power and cooling architect. I feel their voices will add significant value to driving understanding around the many benefits included in this new design paradigm.
Сейчас мы хотим поделиться своим планом модульного дата-центра четвертого поколения. Это наше видение и оно будет основанием для инфраструктуры наших облачных дата-центров в ближайшие пять лет. Мы считаем, что это одно из самых революционных изменений в дата-центрах за последние 30 лет. Вместе со мной в написании этого блога участвовали Дэниел Костелло, директор по исследованиям и инжинирингу дата-центров, и Кристиан Белади, главный архитектор систем энергоснабжения и охлаждения. Мне кажется, что их авторитет придаст больше веса большому количеству преимуществ, включенных в эту новую парадигму проектирования.
Our “Gen 4” modular data centers will take the flexibility of containerized servers—like those in our Chicago data center—and apply it across the entire facility. So what do we mean by modular? Think of it like “building blocks”, where the data center will be composed of modular units of prefabricated mechanical, electrical, security components, etc., in addition to containerized servers.
Was there a key driver for the Generation 4 Data Center?Наши модульные дата-центры “Gen 4” будут гибкими с контейнерами серверов – как серверы в нашем чикагском дата-центре. И гибкость будет применяться ко всему ЦОД. Итак, что мы подразумеваем под модульностью? Мы думаем о ней как о “строительных блоках”, где дата-центр будет состоять из модульных блоков изготовленных в заводских условиях электрических систем и систем охлаждения, а также систем безопасности и т.п., в дополнение к контейнеризованным серверам.
Был ли ключевой стимул для разработки дата-центра четвертого поколения?
If we were to summarize the promise of our Gen 4 design into a single sentence it would be something like this: “A highly modular, scalable, efficient, just-in-time data center capacity program that can be delivered anywhere in the world very quickly and cheaply, while allowing for continued growth as required.” Sounds too good to be true, doesn’t it? Well, keep in mind that these concepts have been in initial development and prototyping for over a year and are based on cumulative knowledge of previous facility generations and the advances we have made since we began our investments in earnest on this new design.Если бы нам нужно было обобщить достоинства нашего проекта Gen 4 в одном предложении, это выглядело бы следующим образом: “Центр обработки данных с высоким уровнем модульности, расширяемости, и энергетической эффективности, а также возможностью постоянного расширения, в случае необходимости, который можно очень быстро и дешево развертывать в любом месте мира”. Звучит слишком хорошо для того чтобы быть правдой, не так ли? Ну, не забывайте, что эти концепции находились в процессе начальной разработки и создания опытного образца в течение более одного года и основываются на опыте, накопленном в ходе развития предыдущих поколений ЦОД, а также успехах, сделанных нами со времени, когда мы начали вкладывать серьезные средства в этот новый проект.
One of the biggest challenges we’ve had at Microsoft is something Mike likes to call the ‘Goldilock’s Problem’. In a nutshell, the problem can be stated as:
The worst thing we can do in delivering facilities for the business is not have enough capacity online, thus limiting the growth of our products and services.Одну из самых больших проблем, с которыми приходилось сталкиваться Майкрософт, Майк любит называть ‘Проблемой Лютика’. Вкратце, эту проблему можно выразить следующим образом:
Самое худшее, что может быть при строительстве ЦОД для бизнеса, это не располагать достаточными производственными мощностями, и тем самым ограничивать рост наших продуктов и сервисов.The second worst thing we can do in delivering facilities for the business is to have too much capacity online.
А вторым самым худшим моментом в этой сфере может слишком большое количество производственных мощностей.
This has led to a focus on smart, intelligent growth for the business — refining our overall demand picture. It can’t be too hot. It can’t be too cold. It has to be ‘Just Right!’ The capital dollars of investment are too large to make without long term planning. As we struggled to master these interesting challenges, we had to ensure that our technological plan also included solutions for the business and operational challenges we faced as well.
So let’s take a high level look at our Generation 4 designЭто заставило нас сосредоточиваться на интеллектуальном росте для бизнеса — refining our overall demand picture. Это не должно быть слишком горячим. И это не должно быть слишком холодным. Это должно быть ‘как раз, таким как надо!’ Нельзя делать такие большие капиталовложения без долгосрочного планирования. Пока мы старались решить эти интересные проблемы, мы должны были гарантировать, что наш технологический план будет также включать решения для коммерческих и эксплуатационных проблем, с которыми нам также приходилось сталкиваться.
Давайте рассмотрим наш проект дата-центра четвертого поколенияAre you ready for some great visuals? Check out this video at Soapbox. Click here for the Microsoft 4th Gen Video.
It’s a concept video that came out of my Data Center Research and Engineering team, under Daniel Costello, that will give you a view into what we think is the future.
From a configuration, construct-ability and time to market perspective, our primary goals and objectives are to modularize the whole data center. Not just the server side (like the Chicago facility), but the mechanical and electrical space as well. This means using the same kind of parts in pre-manufactured modules, the ability to use containers, skids, or rack-based deployments and the ability to tailor the Redundancy and Reliability requirements to the application at a very specific level.
Посмотрите это видео, перейдите по ссылке для просмотра видео о Microsoft 4th Gen:
Это концептуальное видео, созданное командой отдела Data Center Research and Engineering, возглавляемого Дэниелом Костелло, которое даст вам наше представление о будущем.
С точки зрения конфигурации, строительной технологичности и времени вывода на рынок, нашими главными целями и задачами агрегатирование всего дата-центра. Не только серверную часть, как дата-центр в Чикаго, но также системы охлаждения и электрические системы. Это означает применение деталей одного типа в сборных модулях, возможность использования контейнеров, салазок, или стоечных систем, а также возможность подстраивать требования избыточности и надежности для данного приложения на очень специфичном уровне.Our goals from a cost perspective were simple in concept but tough to deliver. First and foremost, we had to reduce the capital cost per critical Mega Watt by the class of use. Some applications can run with N-level redundancy in the infrastructure, others require a little more infrastructure for support. These different classes of infrastructure requirements meant that optimizing for all cost classes was paramount. At Microsoft, we are not a one trick pony and have many Online products and services (240+) that require different levels of operational support. We understand that and ensured that we addressed it in our design which will allow us to reduce capital costs by 20%-40% or greater depending upon class.
Нашими целями в области затрат были концептуально простыми, но трудно реализуемыми. В первую очередь мы должны были снизить капитальные затраты в пересчете на один мегаватт, в зависимости от класса резервирования. Некоторые приложения могут вполне работать на базе инфраструктуры с резервированием на уровне N, то есть без резервирования, а для работы других приложений требуется больше инфраструктуры. Эти разные классы требований инфраструктуры подразумевали, что оптимизация всех классов затрат имеет преобладающее значение. В Майкрософт мы не ограничиваемся одним решением и располагаем большим количеством интерактивных продуктов и сервисов (240+), которым требуются разные уровни эксплуатационной поддержки. Мы понимаем это, и учитываем это в своем проекте, который позволит нам сокращать капитальные затраты на 20%-40% или более в зависимости от класса.For example, non-critical or geo redundant applications have low hardware reliability requirements on a location basis. As a result, Gen 4 can be configured to provide stripped down, low-cost infrastructure with little or no redundancy and/or temperature control. Let’s say an Online service team decides that due to the dramatically lower cost, they will simply use uncontrolled outside air with temperatures ranging 10-35 C and 20-80% RH. The reality is we are already spec-ing this for all of our servers today and working with server vendors to broaden that range even further as Gen 4 becomes a reality. For this class of infrastructure, we eliminate generators, chillers, UPSs, and possibly lower costs relative to traditional infrastructure.
Например, некритичные или гео-избыточные системы имеют низкие требования к аппаратной надежности на основе местоположения. В результате этого, Gen 4 можно конфигурировать для упрощенной, недорогой инфраструктуры с низким уровнем (или вообще без резервирования) резервирования и / или температурного контроля. Скажем, команда интерактивного сервиса решает, что, в связи с намного меньшими затратами, они будут просто использовать некондиционированный наружный воздух с температурой 10-35°C и влажностью 20-80% RH. В реальности мы уже сегодня предъявляем эти требования к своим серверам и работаем с поставщиками серверов над еще большим расширением диапазона температур, так как наш модуль и подход Gen 4 становится реальностью. Для подобного класса инфраструктуры мы удаляем генераторы, чиллеры, ИБП, и, возможно, будем предлагать более низкие затраты, по сравнению с традиционной инфраструктурой.
Applications that demand higher level of redundancy or temperature control will use configurations of Gen 4 to meet those needs, however, they will also cost more (but still less than traditional data centers). We see this cost difference driving engineering behavioral change in that we predict more applications will drive towards Geo redundancy to lower costs.
Системы, которым требуется более высокий уровень резервирования или температурного контроля, будут использовать конфигурации Gen 4, отвечающие этим требованиям, однако, они будут также стоить больше. Но все равно они будут стоить меньше, чем традиционные дата-центры. Мы предвидим, что эти различия в затратах будут вызывать изменения в методах инжиниринга, и по нашим прогнозам, это будет выражаться в переходе все большего числа систем на гео-избыточность и меньшие затраты.
Another cool thing about Gen 4 is that it allows us to deploy capacity when our demand dictates it. Once finalized, we will no longer need to make large upfront investments. Imagine driving capital costs more closely in-line with actual demand, thus greatly reducing time-to-market and adding the capacity Online inherent in the design. Also reduced is the amount of construction labor required to put these “building blocks” together. Since the entire platform requires pre-manufacture of its core components, on-site construction costs are lowered. This allows us to maximize our return on invested capital.
Еще одно достоинство Gen 4 состоит в том, что он позволяет нам разворачивать дополнительные мощности, когда нам это необходимо. Как только мы закончим проект, нам больше не нужно будет делать большие начальные капиталовложения. Представьте себе возможность более точного согласования капитальных затрат с реальными требованиями, и тем самым значительного снижения времени вывода на рынок и интерактивного добавления мощностей, предусматриваемого проектом. Также снижен объем строительных работ, требуемых для сборки этих “строительных блоков”. Поскольку вся платформа требует предварительного изготовления ее базовых компонентов, затраты на сборку также снижены. Это позволит нам увеличить до максимума окупаемость своих капиталовложений.
Мы все подвергаем сомнениюIn our design process, we questioned everything. You may notice there is no roof and some might be uncomfortable with this. We explored the need of one and throughout our research we got some surprising (positive) results that showed one wasn’t needed.
В своем процессе проектирования мы все подвергаем сомнению. Вы, наверное, обратили внимание на отсутствие крыши, и некоторым специалистам это могло не понравиться. Мы изучили необходимость в крыше и в ходе своих исследований получили удивительные результаты, которые показали, что крыша не нужна.
Серийное производство дата центров
In short, we are striving to bring Henry Ford’s Model T factory to the data center. http://en.wikipedia.org/wiki/Henry_Ford#Model_T. Gen 4 will move data centers from a custom design and build model to a commoditized manufacturing approach. We intend to have our components built in factories and then assemble them in one location (the data center site) very quickly. Think about how a computer, car or plane is built today. Components are manufactured by different companies all over the world to a predefined spec and then integrated in one location based on demands and feature requirements. And just like Henry Ford’s assembly line drove the cost of building and the time-to-market down dramatically for the automobile industry, we expect Gen 4 to do the same for data centers. Everything will be pre-manufactured and assembled on the pad.Мы хотим применить модель автомобильной фабрики Генри Форда к дата-центру. Проект Gen 4 будет способствовать переходу от модели специализированного проектирования и строительства к товарно-производственному, серийному подходу. Мы намерены изготавливать свои компоненты на заводах, а затем очень быстро собирать их в одном месте, в месте строительства дата-центра. Подумайте о том, как сегодня изготавливается компьютер, автомобиль или самолет. Компоненты изготавливаются по заранее определенным спецификациям разными компаниями во всем мире, затем собираются в одном месте на основе спроса и требуемых характеристик. И точно так же как сборочный конвейер Генри Форда привел к значительному уменьшению затрат на производство и времени вывода на рынок в автомобильной промышленности, мы надеемся, что Gen 4 сделает то же самое для дата-центров. Все будет предварительно изготавливаться и собираться на месте.
Невероятно энергоэффективный ЦОД
And did we mention that this platform will be, overall, incredibly energy efficient? From a total energy perspective not only will we have remarkable PUE values, but the total cost of energy going into the facility will be greatly reduced as well. How much energy goes into making concrete? Will we need as much of it? How much energy goes into the fuel of the construction vehicles? This will also be greatly reduced! A key driver is our goal to achieve an average PUE at or below 1.125 by 2012 across our data centers. More than that, we are on a mission to reduce the overall amount of copper and water used in these facilities. We believe these will be the next areas of industry attention when and if the energy problem is solved. So we are asking today…“how can we build a data center with less building”?А мы упоминали, что эта платформа будет, в общем, невероятно энергоэффективной? С точки зрения общей энергии, мы получим не только поразительные значения PUE, но общая стоимость энергии, затраченной на объект будет также значительно снижена. Сколько энергии идет на производство бетона? Нам нужно будет столько энергии? Сколько энергии идет на питание инженерных строительных машин? Это тоже будет значительно снижено! Главным стимулом является достижение среднего PUE не больше 1.125 для всех наших дата-центров к 2012 году. Более того, у нас есть задача сокращения общего количества меди и воды в дата-центрах. Мы думаем, что эти задачи станут следующей заботой отрасли после того как будет решена энергетическая проблема. Итак, сегодня мы спрашиваем себя…“как можно построить дата-центр с меньшим объемом строительных работ”?
Строительство дата центров без чиллеровWe have talked openly and publicly about building chiller-less data centers and running our facilities using aggressive outside economization. Our sincerest hope is that Gen 4 will completely eliminate the use of water. Today’s data centers use massive amounts of water and we see water as the next scarce resource and have decided to take a proactive stance on making water conservation part of our plan.
Мы открыто и публично говорили о строительстве дата-центров без чиллеров и активном использовании в наших центрах обработки данных технологий свободного охлаждения или фрикулинга. Мы искренне надеемся, что Gen 4 позволит полностью отказаться от использования воды. Современные дата-центры расходуют большие объемы воды и так как мы считаем воду следующим редким ресурсом, мы решили принять упреждающие меры и включить экономию воды в свой план.
By sharing this with the industry, we believe everyone can benefit from our methodology. While this concept and approach may be intimidating (or downright frightening) to some in the industry, disclosure ultimately is better for all of us.
Делясь этим опытом с отраслью, мы считаем, что каждый сможет извлечь выгоду из нашей методологией. Хотя эта концепция и подход могут показаться пугающими (или откровенно страшными) для некоторых отраслевых специалистов, раскрывая свои планы мы, в конечном счете, делаем лучше для всех нас.
Gen 4 design (even more than just containers), could reduce the ‘religious’ debates in our industry. With the central spine infrastructure in place, containers or pre-manufactured server halls can be either AC or DC, air-side economized or water-side economized, or not economized at all (though the sanity of that might be questioned). Gen 4 will allow us to decommission, repair and upgrade quickly because everything is modular. No longer will we be governed by the initial decisions made when constructing the facility. We will have almost unlimited use and re-use of the facility and site. We will also be able to use power in an ultra-fluid fashion moving load from critical to non-critical as use and capacity requirements dictate.
Проект Gen 4 позволит уменьшить ‘религиозные’ споры в нашей отрасли. Располагая базовой инфраструктурой, контейнеры или сборные серверные могут оборудоваться системами переменного или постоянного тока, воздушными или водяными экономайзерами, или вообще не использовать экономайзеры. Хотя можно подвергать сомнению разумность такого решения. Gen 4 позволит нам быстро выполнять работы по выводу из эксплуатации, ремонту и модернизации, поскольку все будет модульным. Мы больше не будем руководствоваться начальными решениями, принятыми во время строительства дата-центра. Мы сможем использовать этот дата-центр и инфраструктуру в течение почти неограниченного периода времени. Мы также сможем применять сверхгибкие методы использования электрической энергии, переводя оборудование в режимы критической или некритической нагрузки в соответствии с требуемой мощностью.
Gen 4 – это стандартная платформаFinally, we believe this is a big game changer. Gen 4 will provide a standard platform that our industry can innovate around. For example, all modules in our Gen 4 will have common interfaces clearly defined by our specs and any vendor that meets these specifications will be able to plug into our infrastructure. Whether you are a computer vendor, UPS vendor, generator vendor, etc., you will be able to plug and play into our infrastructure. This means we can also source anyone, anywhere on the globe to minimize costs and maximize performance. We want to help motivate the industry to further innovate—with innovations from which everyone can reap the benefits.
Наконец, мы уверены, что это будет фактором, который значительно изменит ситуацию. Gen 4 будет представлять собой стандартную платформу, которую отрасль сможет обновлять. Например, все модули в нашем Gen 4 будут иметь общепринятые интерфейсы, четко определяемые нашими спецификациями, и оборудование любого поставщика, которое отвечает этим спецификациям можно будет включать в нашу инфраструктуру. Независимо от того производите вы компьютеры, ИБП, генераторы и т.п., вы сможете включать свое оборудование нашу инфраструктуру. Это означает, что мы также сможем обеспечивать всех, в любом месте земного шара, тем самым сводя до минимума затраты и максимальной увеличивая производительность. Мы хотим создать в отрасли мотивацию для дальнейших инноваций – инноваций, от которых каждый сможет получать выгоду.
Главные характеристики дата-центров четвертого поколения Gen4To summarize, the key characteristics of our Generation 4 data centers are:
Scalable
Plug-and-play spine infrastructure
Factory pre-assembled: Pre-Assembled Containers (PACs) & Pre-Manufactured Buildings (PMBs)
Rapid deployment
De-mountable
Reduce TTM
Reduced construction
Sustainable measuresНиже приведены главные характеристики дата-центров четвертого поколения Gen 4:
Расширяемость;
Готовая к использованию базовая инфраструктура;
Изготовление в заводских условиях: сборные контейнеры (PAC) и сборные здания (PMB);
Быстрота развертывания;
Возможность демонтажа;
Снижение времени вывода на рынок (TTM);
Сокращение сроков строительства;
Экологичность;Map applications to DC Class
We hope you join us on this incredible journey of change and innovation!
Long hours of research and engineering time are invested into this process. There are still some long days and nights ahead, but the vision is clear. Rest assured however, that we as refine Generation 4, the team will soon be looking to Generation 5 (even if it is a bit farther out). There is always room to get better.
Использование систем электропитания постоянного тока.
Мы надеемся, что вы присоединитесь к нам в этом невероятном путешествии по миру изменений и инноваций!
На этот проект уже потрачены долгие часы исследований и проектирования. И еще предстоит потратить много дней и ночей, но мы имеем четкое представление о конечной цели. Однако будьте уверены, что как только мы доведем до конца проект модульного дата-центра четвертого поколения, мы вскоре начнем думать о проекте дата-центра пятого поколения. Всегда есть возможность для улучшений.So if you happen to come across Goldilocks in the forest, and you are curious as to why she is smiling you will know that she feels very good about getting very close to ‘JUST RIGHT’.
Generations of Evolution – some background on our data center designsТак что, если вы встретите в лесу девочку по имени Лютик, и вам станет любопытно, почему она улыбается, вы будете знать, что она очень довольна тем, что очень близко подошла к ‘ОПИМАЛЬНОМУ РЕШЕНИЮ’.
Поколения эволюции – история развития наших дата-центровWe thought you might be interested in understanding what happened in the first three generations of our data center designs. When Ray Ozzie wrote his Software plus Services memo it posed a very interesting challenge to us. The winds of change were at ‘tornado’ proportions. That “plus Services” tag had some significant (and unstated) challenges inherent to it. The first was that Microsoft was going to evolve even further into an operations company. While we had been running large scale Internet services since 1995, this development lead us to an entirely new level. Additionally, these “services” would span across both Internet and Enterprise businesses. To those of you who have to operate “stuff”, you know that these are two very different worlds in operational models and challenges. It also meant that, to achieve the same level of reliability and performance required our infrastructure was going to have to scale globally and in a significant way.
Мы подумали, что может быть вам будет интересно узнать историю первых трех поколений наших центров обработки данных. Когда Рэй Оззи написал свою памятную записку Software plus Services, он поставил перед нами очень интересную задачу. Ветра перемен двигались с ураганной скоростью. Это окончание “plus Services” скрывало в себе какие-то значительные и неопределенные задачи. Первая заключалась в том, что Майкрософт собиралась в еще большей степени стать операционной компанией. Несмотря на то, что мы управляли большими интернет-сервисами, начиная с 1995 г., эта разработка подняла нас на абсолютно новый уровень. Кроме того, эти “сервисы” охватывали интернет-компании и корпорации. Тем, кому приходится всем этим управлять, известно, что есть два очень разных мира в области операционных моделей и задач. Это также означало, что для достижения такого же уровня надежности и производительности требовалось, чтобы наша инфраструктура располагала значительными возможностями расширения в глобальных масштабах.
It was that intense atmosphere of change that we first started re-evaluating data center technology and processes in general and our ideas began to reach farther than what was accepted by the industry at large. This was the era of Generation 1. As we look at where most of the world’s data centers are today (and where our facilities were), it represented all the known learning and design requirements that had been in place since IBM built the first purpose-built computer room. These facilities focused more around uptime, reliability and redundancy. Big infrastructure was held accountable to solve all potential environmental shortfalls. This is where the majority of infrastructure in the industry still is today.
Именно в этой атмосфере серьезных изменений мы впервые начали переоценку ЦОД-технологий и технологий вообще, и наши идеи начали выходить за пределы общепринятых в отрасли представлений. Это была эпоха ЦОД первого поколения. Когда мы узнали, где сегодня располагается большинство мировых дата-центров и где находятся наши предприятия, это представляло весь опыт и навыки проектирования, накопленные со времени, когда IBM построила первую серверную. В этих ЦОД больше внимания уделялось бесперебойной работе, надежности и резервированию. Большая инфраструктура была призвана решать все потенциальные экологические проблемы. Сегодня большая часть инфраструктуры все еще находится на этом этапе своего развития.
We soon realized that traditional data centers were quickly becoming outdated. They were not keeping up with the demands of what was happening technologically and environmentally. That’s when we kicked off our Generation 2 design. Gen 2 facilities started taking into account sustainability, energy efficiency, and really looking at the total cost of energy and operations.
Очень быстро мы поняли, что стандартные дата-центры очень быстро становятся устаревшими. Они не поспевали за темпами изменений технологических и экологических требований. Именно тогда мы стали разрабатывать ЦОД второго поколения. В этих дата-центрах Gen 2 стали принимать во внимание такие факторы как устойчивое развитие, энергетическая эффективность, а также общие энергетические и эксплуатационные.
No longer did we view data centers just for the upfront capital costs, but we took a hard look at the facility over the course of its life. Our Quincy, Washington and San Antonio, Texas facilities are examples of our Gen 2 data centers where we explored and implemented new ways to lessen the impact on the environment. These facilities are considered two leading industry examples, based on their energy efficiency and ability to run and operate at new levels of scale and performance by leveraging clean hydro power (Quincy) and recycled waste water (San Antonio) to cool the facility during peak cooling months.
Мы больше не рассматривали дата-центры только с точки зрения начальных капитальных затрат, а внимательно следили за работой ЦОД на протяжении его срока службы. Наши объекты в Куинси, Вашингтоне, и Сан-Антонио, Техас, являются образцами наших ЦОД второго поколения, в которых мы изучали и применяли на практике новые способы снижения воздействия на окружающую среду. Эти объекты считаются двумя ведущими отраслевыми примерами, исходя из их энергетической эффективности и способности работать на новых уровнях производительности, основанных на использовании чистой энергии воды (Куинси) и рециклирования отработанной воды (Сан-Антонио) для охлаждения объекта в самых жарких месяцах.
As we were delivering our Gen 2 facilities into steel and concrete, our Generation 3 facilities were rapidly driving the evolution of the program. The key concepts for our Gen 3 design are increased modularity and greater concentration around energy efficiency and scale. The Gen 3 facility will be best represented by the Chicago, Illinois facility currently under construction. This facility will seem very foreign compared to the traditional data center concepts most of the industry is comfortable with. In fact, if you ever sit around in our container hanger in Chicago it will look incredibly different from a traditional raised-floor data center. We anticipate this modularization will drive huge efficiencies in terms of cost and operations for our business. We will also introduce significant changes in the environmental systems used to run our facilities. These concepts and processes (where applicable) will help us gain even greater efficiencies in our existing footprint, allowing us to further maximize infrastructure investments.
Так как наши ЦОД второго поколения строились из стали и бетона, наши центры обработки данных третьего поколения начали их быстро вытеснять. Главными концептуальными особенностями ЦОД третьего поколения Gen 3 являются повышенная модульность и большее внимание к энергетической эффективности и масштабированию. Дата-центры третьего поколения лучше всего представлены объектом, который в настоящее время строится в Чикаго, Иллинойс. Этот ЦОД будет выглядеть очень необычно, по сравнению с общепринятыми в отрасли представлениями о дата-центре. Действительно, если вам когда-либо удастся побывать в нашем контейнерном ангаре в Чикаго, он покажется вам совершенно непохожим на обычный дата-центр с фальшполом. Мы предполагаем, что этот модульный подход будет способствовать значительному повышению эффективности нашего бизнеса в отношении затрат и операций. Мы также внесем существенные изменения в климатические системы, используемые в наших ЦОД. Эти концепции и технологии, если применимо, позволят нам добиться еще большей эффективности наших существующих дата-центров, и тем самым еще больше увеличивать капиталовложения в инфраструктуру.
This is definitely a journey, not a destination industry. In fact, our Generation 4 design has been under heavy engineering for viability and cost for over a year. While the demand of our commercial growth required us to make investments as we grew, we treated each step in the learning as a process for further innovation in data centers. The design for our future Gen 4 facilities enabled us to make visionary advances that addressed the challenges of building, running, and operating facilities all in one concerted effort.
Это определенно путешествие, а не конечный пункт назначения. На самом деле, наш проект ЦОД четвертого поколения подвергался серьезным испытаниям на жизнеспособность и затраты на протяжении целого года. Хотя необходимость в коммерческом росте требовала от нас постоянных капиталовложений, мы рассматривали каждый этап своего развития как шаг к будущим инновациям в области дата-центров. Проект наших будущих ЦОД четвертого поколения Gen 4 позволил нам делать фантастические предположения, которые касались задач строительства, управления и эксплуатации объектов как единого упорядоченного процесса.
Тематики
Синонимы
EN
Англо-русский словарь нормативно-технической терминологии > modular data center
-
5 control
управление; регулирование; контроль; орган [рычаг] управления; руль; pl. система управления или регулирования; управлять; регулироватьback seat flight control — управление ЛА из задней кабины [с места заднего лётчика]; pl. дублирующие органы управления в задней кабине
be out of control — терять управление [управляемость]; выходить из-под управления [контроля]
continuously variable thrust control — плавное [бесступенчатое] регулирование тяги
control c.g. control — регулирование центровки (ЛА)
control of missile attitude — стабилизация ракеты; управление пространственным положением ракеты
control of the air — превосходство или господство в воздухе; превосходство в области авиации [в авиационной технике]; контроль воздушного пространства
control of the yoke — разг. управление штурвалом
control of thrust orientation — управление ориентированием [направлением вектора] тяги
flight deck lighting controls — органы управления [ручки регулировки] освещением кабины экипажа
fling the controls over — перебрасывать органы управления (в противоположную сторону),
flow control with altitude compensation — регулятор расхода [подачи] с высотным корректором
fuel dump valve control — кран [рычаг крана] аварийного слива топлива
gas jet attitude control — управление пространственным положением с помощью системы газоструйных рулей
go out of control — терять управление, выходить из-под управления [контроля]
ground rollout rudder steering control — управление пробегом [на пробеге] с помощью руля направления
interconnected fuel and propeller controls — объединённая система регулирования подачи топлива и шага винта
jet tab thrust vector control — управление вектором тяги с помощью газовых рулей; дефлекторное управление вектором тяги
jet(-deflection, -direction) control — реактивное [струйное] управление; управление изменением направления тяги; струйный руль
manual mixture shut-off control — рычаг отсечки подачи горючей смеси, рычаг останова [выключения] двигателя
maximum boundary layer control — управление пограничным слоем при наибольшей эффективности [производительности, интенсивности работы] системы
recover the control — восстанавливать управление [управляемость]
respond to the controls — реагировать [отвечать] на отклонение рулей [органов управления]
space shuttle orbiter control — управление орбитальной ступенью челночного воздушно-космического аппарата
throttle and collective pitch control — верт. рычаг «шаг — газ»
-
6 flight
полет; рейс; перелёт; звено; летательный аппарат ( в полете) ; ркт. стартовый комплекс; лётный; полётный; бортовой1g flight — прямолинейный горизонтальный полет, полет с единичной перегрузкой, полет без ускорения или торможения
45° climbing inverted flight — набор высоты под углом 45° в перевёрнутом положении
45° climbing knife flight — набор высоты под углом 45° с боковым скольжением, подъём «по лезвию» под углом 45°
45° diving knife flight — пикирование под углом 45° с боковым скольжением, пикирование «по лезвию» под углом 45°
45° sliding flight — набор высоты под углом 45° с боковым скольжением, подъём «по лезвию» под углом 45°
45° sliding flight — пикирование под углом 45° с боковым скольжением, пикирование «по лезвию» под углом 45°
90° climbing flight — вертикальный подъём, отвесный набор высоты
break up in flight — разрушаться в воздухе [в полете]
Doppler hold hovering flight — полет на висении со стабилизацией по доплеровскому измерителю скорости сноса
flight at the controls — полет за рычагами управления (в качестве лётчика, пилотирующего самолёт)
flight on the deck — бреющий полет, полет на предельно малой высоте
— q flight -
7 speed
скорость; число оборотов; ускорятьat a speed of Mach 3 — при скорости, соответствующей числу М=3
best (cost) cruising speed — наивыгоднейшая [экономическая] крейсерская скорость полёта
clean (configuration) stall speed — скорость срыва [сваливания] при убранных механизации и шасси
engine-out discontinued approach speed — скорость ухода на второй круг с минимальной высоты при одном неработающем двигателе
flap(-down, -extended) speed — скорость полёта с выпущенными [отклонёнными] закрылками
forward с.g. stalling speed — скорость срыва [сваливания] при передней центровке
hold the speed down — уменьшать [гасить] скорость
minimum single-engine control speed — минимальная эволютивная скорость полёта с одним (работающим) двигателем (из двух)
minimum speedln a stall — минимальная скорость срыва [сваливания]
one-engine-inoperative power-on stalling speed — скорость срыва [сваливания] при одном отказавшем двигателе
rearward с.g. stalling speed — скорость срыва [сваливания] при задней центровке
representative cruising air speed — типовая крейсерская воздушная скорость, скорость полёта на типичном крейсерском режиме
speed over the top — скорость в верхней точке (траектории, маневра)
zero rate of climb speed — скорость полёта при нулевой скороподъёмности [вертикальной скорости]
— speed up -
8 current
1) течение; поток4) вчт. текущая запись•-
absorption current
- ac anode current -
action current
-
active current
-
actuating current
-
admissible continuous current
-
air current
-
alongshore current
-
alternate current
-
anode current
-
arbitrary noise current
-
arc current
-
arc-back current
-
arcing ground fault current
-
armature current
-
ascending current
-
audio-frequency current
-
avalanche current
-
back current
-
back short circuit current
-
backward current
-
barogradient current
-
base current
-
beam current
-
bearing currents
-
beating current
-
beat current
-
biasing current
-
bias current
-
biphase current
-
bleeder current
-
blind current
-
blowing current
-
body current
-
bottom current
-
boundary current
-
braking current
-
branch current
-
break induced current
-
breakaway starting current
-
breakdown current
-
breaking current
-
bucking current
-
bulk current
-
bypass current
-
capacitance current
-
capacitive current
-
capacity current
-
carrier current
-
cathode current
-
channel current
-
charging current
-
circulating current
-
circumpolar current
-
collector current
-
complex sinusoidal current
-
complex current
-
conduction current
-
conjugate complex sinusoidal current
-
conjugate complex current
-
constant current
-
consumption current
-
continuous current
-
continuous traction current
-
control current
-
convection current
-
core-loss current
-
creeping current
-
critical current
-
cross current
-
crystal current
-
current of realm
-
current of run-unit
-
current of set
-
cutoff current
-
damped alternating current
-
damped current
-
dark current
-
deep-water current
-
deep current
-
delta currents
-
density current
-
descending current
-
design current
-
dielectric absorption current
-
dielectric current
-
diffusion current
-
direct current
-
direct-axis current
-
discharge current
-
discontinuous current
-
displacement current
-
downward current
-
drift current
-
drive current
-
drop-away current
-
earth current
-
earth fault current
-
eddy currents
-
effective current
-
electric current
-
electrode current
-
electrolysis current
-
electron current
-
electron-beam induced current
-
emission current
-
emitter current
-
equalizing current
-
equivalent input noise current
-
excess current
-
exchange current
-
excitation current
-
external current
-
extra current
-
extraction current
-
extraneous current
-
feedback current
-
field current
-
filament current
-
firing current
-
flood current
-
fluctuating current
-
focusing-coil current
-
focus current
-
fold back current
-
follow current
-
forced alternating current
-
forced current
-
foreign currents
-
forward current
-
Foucault currents
-
free alternating current
-
free current
-
full-load current
-
fusing current
-
galvanic current
-
gas current
-
gate current
-
gate nontrigger current
-
gate trigger current
-
gate turnoff current
-
generation-recombination current
-
gradient current
-
grib current
-
ground current
-
ground-return current
-
harmonic current
-
heat current
-
heater current
-
high-frequency current
-
high-level input current
-
high-level output current
-
holding current
-
hold current
-
hold-on current
-
hole current
-
idle current
-
image current
-
impressed current
-
incident current
-
induced current
-
initial current
-
injection current
-
inphase current
-
input current
-
input leakage current
-
input offset current
-
inrush current
-
inshore current
-
instantaneous carrying current
-
instantaneous current
-
insulation current
-
interference current
-
intermittent current
-
inverse current
-
ion production current
-
ionic current
-
ion current
-
ionization current
-
irradiation-saturation current
-
lagging current
-
latching current
-
leading current
-
leakage current
-
let-go current
-
light current
-
lightning current
-
line charging current
-
linear current
-
load current
-
locked-rotor current
-
loop current
-
loss current
-
low-level input current
-
low-level output current
-
magnetization current
-
majority-carrier current
-
majority current
-
make induced current
-
make-and-brake current
-
making current
-
maximum power current
-
minority-carrier current
-
minority current
-
motor inrush current
-
nearshore current
-
near-surface current
-
net current
-
neutral current
-
neutron current
-
neutron diffusion current
-
noise current
-
no-load current
-
nonsinusoidal current
-
nontrigger current
-
non-turn-off
-
offset current
-
offshore current
-
off-state current
-
on-state current
-
open-circuit current
-
operating current
-
output current
-
overload current
-
parasitic current
-
peak arc current
-
peak current
-
peak switching current
-
peak withstand current
-
peak-point current
-
peak-to-peak current
-
perception current
-
periodic current
-
persistent current
-
phase current
-
phase-fault current
-
phasor current
-
photo-electric current
-
photo current
-
photo-generated current
-
photo-induced current
-
pickup current
-
piezoelectric current
-
pinch current
-
plasma current
-
polarization current
-
polyphase current
-
postarc current
-
power current
-
power follow current
-
prebreakdown current
-
preconduction current
-
primary current
-
principal current
-
probe current
-
pull-in current
-
pulsating current
-
pulse current
-
pyroelectric current
-
quadrature-axis current
-
quiescent current
-
rated current
-
rated temperature-rise current
-
reactive current
-
read current
-
recombination current
-
rectified current
-
reflected current
-
regulated current
-
relative short-circuit current
-
release current
-
residual current
-
rest current
-
return current
-
reverse current
-
reverse-biased current
-
reverse-induced current
-
RF current
-
ringing current
-
rip current
-
ripple current
-
root-mean-square current
-
running current
-
rupturing current
-
saturated drain current
-
saturation current
-
saw-tooth current
-
secondary current
-
secondary-electron emission current
-
shaft currents
-
sheath current
-
shelf current
-
shield current
-
shock current
-
short-circuit current
-
short-noise current
-
short-time thermal current
-
short-time withstand current
-
sine-wave current
-
single-phase current
-
sinusoidal current
-
slope current
-
sneak current
-
spindle-motor current
-
split current
-
stalled-motor current
-
standby current
-
standing current
-
star currents
-
starter current
-
steady leakage current
-
steady surface current
-
steady volume current
-
steady-state current
-
stray current
-
stroke current
-
subsurface current
-
subsynchronous frequency current
-
subsynchronous current
-
subtransient armature current
-
superconduction current
-
superimposed current
-
supply current
-
surface current
-
surface-leakage current
-
surge current
-
suspension current
-
sustained current
-
sustaining current
-
switched current
-
switching current
-
symmetrical alternate current
-
synchronizing current
-
telluric current
-
test current
-
thermal current
-
thermal noise current
-
thermionic current
-
thermostimulated current
-
three-phase current
-
threshold current
-
through current
-
tidal current
-
tolerance current
-
traction current
-
traffic current
-
transfer current
-
transient current
-
transient-decay current
-
transmission-line current
-
trigger current
-
turbidity current
-
turnoff current
-
turn-on current
-
two-phase current
-
undulating current
-
unidirectional current
-
unsymmetrical currents
-
upward current
-
valley point current
-
variable current
-
vector current
-
virtual current
-
voice-frequency current
-
voltaic current
-
wattful current
-
wattless current
-
welding current
-
whirling currents
-
wind current
-
withdrawal current
-
working current
-
work current
-
Zener current
-
zero-sequence current -
9 voltage
1) напряжение, разность потенциалов2) потенциал3) электродвижущая сила, эдс•voltage across smth — напряжение на чем-л.;voltage applied to smth — напряжение, приложенное к чему-л.;voltage between phases — междуфазное [линейное\] напряжение;voltage to earth [to ground\] — напряжение относительно земли;to handle voltage — выдерживать напряжение;-
ac voltage
-
accelerating voltage
-
active component voltage
-
active voltage
-
actuating voltage
-
adjusting voltage
-
aging voltage
-
allowable voltage
-
alternating voltage
-
alternator field voltage
-
anode voltage
-
applied voltage
-
arc voltage
-
arc-drop voltage
-
arcing voltage
-
arc-stream voltage
-
average voltage
-
back voltage
-
background ionization voltage
-
backward voltage
-
balanced voltage
-
balancing voltage
-
bandgap voltage
-
barrier voltage
-
bar-to-bar voltage
-
base voltage
-
battery voltage
-
bias voltage
-
bidirectional voltage
-
black-out voltage
-
blanking voltage
-
blocking voltage
-
branch voltage
-
breakdown voltage
-
breakover voltage
-
bridge supply voltage
-
bucking voltage
-
built-in voltage
-
burning voltage
-
burnout voltage
-
bus voltage
-
calibration voltage
-
capacitor voltage
-
carrier voltage
-
category voltage
-
catenary voltage
-
cathode voltage
-
ceiling voltage
-
cell voltage
-
charge voltage
-
circuit voltage
-
clamp voltage
-
clock voltage
-
closed-circuit voltage
-
commercial-frequency voltage
-
commercial-frequency withstand voltage
-
common-mode voltage
-
commutating voltage
-
commutator voltage
-
compensating voltage
-
complex voltage
-
component voltage
-
constant voltage
-
contact voltage
-
control voltage
-
convergence voltage
-
corona voltage
-
corona-onset voltage
-
counter voltage
-
crest voltage
-
critical corona voltage
-
critical visual corona voltage
-
critical voltage
-
current-noise voltage
-
current-resistance voltage
-
cutoff voltage
-
cycling voltage
-
dc recovery voltage
-
dc voltage
-
decelerating voltage
-
decomposition voltage
-
deflecting voltage
-
delta voltage
-
design voltage
-
dielectric breakdown voltage
-
direct voltage
-
direct-axis component voltage behind transient reactance
-
direct-axis subtransient internal voltage
-
direct-axis subtransient voltage
-
direct-axis synchronous internal voltage
-
direct-axis synchronous voltage
-
direct-axis transient internal voltage
-
direct-axis transient voltage
-
discharge extinction voltage
-
discharge inception voltage
-
discharge ionization voltage
-
discharge voltage
-
disruptive discharge voltage
-
disruptive voltage
-
dissymmetrical voltage
-
disturbance voltage
-
driving voltage
-
drop-away voltage
-
dry withstand voltage
-
effective voltage
-
electric cell voltage
-
electrode voltage
-
end voltage
-
end-point voltage
-
equilibrium voltage
-
equivalent input noise voltage
-
error voltage
-
excess voltage
-
excitation voltage
-
exciter voltage
-
extinction voltage
-
extinguishing voltage
-
extrahigh voltage
-
Faraday voltage
-
fatal voltage
-
feedback voltage
-
field voltage
-
filament voltage
-
final acceleration voltage
-
final voltage
-
fire-back voltage
-
firing voltage
-
flash test voltage
-
flashover voltage
-
floating voltage
-
flyback voltage
-
focusing voltage
-
focus voltage
-
formation voltage
-
forward voltage
-
gas-discharge maintaining voltage
-
gate nontrigger voltage
-
gate trigger voltage
-
gate turn-off voltage
-
gate voltage
-
gating voltage
-
generated voltage
-
generator voltage
-
glow-discharge sustaining voltage
-
grid driving voltage
-
ground voltage
-
Hall voltage
-
heater voltage
-
high voltage
-
high-level voltage
-
ignition voltage
-
impedance voltage
-
impressed voltage
-
impulse testing voltage
-
impulse voltage
-
impulse withstand voltage
-
induced body voltage
-
induced voltage
-
inductance voltage
-
initial ionization voltage
-
initial voltage
-
injected voltage
-
in-phase voltage
-
input voltage
-
instantaneous voltage
-
interference voltage
-
internal voltage
-
inverse voltage
-
ionizing voltage
-
junction voltage
-
keep-alive voltage
-
lagging voltage
-
leading voltage
-
leakage reactance voltage
-
leakage voltage
-
lightning impulse flashover voltage
-
lightning impulse voltage
-
lightning impulse withstanding voltage
-
lightning induced voltage
-
limit voltage
-
limiting voltage
-
line voltage
-
linearity trim voltage
-
line-to-earth voltage
-
line-to-line voltage
-
loading voltage
-
load voltage
-
locked rotor voltage
-
locking voltage
-
logic threshold voltage
-
low voltage
-
low-level voltage
-
mains voltage
-
maintaining voltage
-
maximum operating voltage
-
maximum-power-point voltage
-
medium voltage
-
modulation voltage
-
negative phase-sequence voltage
-
negative sequence voltage
-
net voltage
-
neutral-to-ground voltage
-
nodal voltage
-
noise voltage
-
no-load field voltage
-
no-load voltage
-
nominal excitation ceiling voltage
-
nominal voltage
-
normal voltage
-
off-load voltage
-
offset voltage
-
off-standard voltage
-
off-state voltage
-
one-minute test voltage
-
one-minute withstand voltage
-
on-load voltage
-
on-state voltage
-
open-circuit secondary voltage
-
open-circuit voltage
-
operate voltage
-
operating supply voltage
-
operating voltage
-
out-of-phase voltage
-
output voltage
-
pace voltage
-
partial discharge extinction voltage
-
partial discharge inception voltage
-
peak arc voltage
-
peak reverse voltage
-
peak voltage
-
peak-point voltage
-
peak-to-peak ripple voltage
-
peak-to-peak voltage
-
per unit voltage
-
periodic voltage
-
permissible voltage
-
phase voltage
-
phase-to-ground voltage
-
phase-to-phase voltage
-
pickup voltage
-
pinch-off voltage
-
plate voltage
-
polarization voltage
-
positive-phase-sequence voltage
-
positive-sequence voltage
-
power-frequency voltage
-
preset voltage
-
presparkover voltage
-
primary voltage
-
probe voltage
-
protection voltage
-
psophometric voltage
-
pull-in voltage
-
pull-out voltage
-
pulsating voltage
-
pulse breakdown voltage
-
pulse noise voltage
-
punch-through voltage
-
puncture voltage
-
quadrature-axis component voltage behind transient reactance
-
quadrature-axis subtransient internal voltage
-
quadrature-axis subtransient voltage
-
quadrature-axis synchronous internal voltage
-
quadrature-axis synchronous voltage
-
quadrature-axis transient internal voltage
-
quadrature-axis transient voltage
-
quiescent input voltage
-
quiescent output voltage
-
radio interference voltage
-
rated impulse withstand voltage
-
rated temperature-rise voltage
-
rated voltage
-
reach-through voltage
-
reactance voltage
-
receiver voltage
-
receiving-end voltage
-
recovery voltage
-
rectified voltage
-
reduced voltage
-
reference voltage
-
reignition voltage
-
release voltage
-
repetitive voltage
-
residual voltage
-
resistance voltage
-
resonance voltage
-
response voltage
-
restoring voltage
-
restraining voltage
-
restriking voltage
-
reverse voltage
-
ring voltage
-
ring-to-ring voltage
-
ripple voltage
-
root-mean-square voltage
-
running voltage
-
safety extralow voltage
-
saturation voltage
-
sawtooth voltage
-
secondary voltage
-
self-induction voltage
-
sending-end voltage
-
sense voltage
-
service voltage
-
shift voltage
-
shock voltage
-
short-circuit voltage
-
shorting voltage
-
shot-noise voltage
-
signal voltage
-
sine-curve voltage
-
sine voltage
-
sine-wave voltage
-
sinusoidal voltage
-
slip-ring voltage
-
smoothed dc voltage
-
source voltage
-
spark-gap breakdown voltage
-
sparking voltage
-
sparkover voltage
-
speed-induced voltage
-
speed voltage
-
spot cutoff voltage
-
square-wave voltage
-
stabilized voltage
-
standard voltage
-
star voltage
-
starting voltage
-
static breakdown voltage
-
station auxiliaries voltage
-
steady-state voltage
-
step voltage
-
stray voltage
-
striking voltage
-
subtransient internal voltage
-
subtransient voltage
-
superimposed voltage
-
supply voltage
-
supply-line voltage
-
surge voltage
-
sustaining voltage
-
sweep voltage
-
swing voltage
-
switching surge voltage
-
switching voltage
-
symmetrical voltage
-
synchronous generator internal voltage
-
synchronous generator voltage
-
system voltage
-
tank voltage
-
tapping voltage
-
temperature voltage
-
terminal voltage
-
testing voltage
-
test voltage
-
thermal noise voltage
-
thermocouple voltage
-
thermoelectric voltage
-
threshold voltage
-
tooth voltage
-
touch voltage
-
transient internal voltage
-
transient recovery voltage
-
transient voltage
-
transmission-line voltage
-
trigger voltage
-
tuning voltage
-
turnoff voltage
-
ultor voltage
-
ultrahigh voltage
-
unbalanced voltage
-
unidirectional voltage
-
upper voltage
-
variable voltage
-
welding voltage
-
welding-arc voltage
-
wet switching surge withstand voltage
-
wet withstand voltage
-
withstanding voltage
-
withstand voltage
-
working voltage
-
Y-voltage
-
zener voltage
-
zero-phase-sequence voltage
-
zero-sequence voltage -
10 stall
срыв ( потока) ; срыв, сваливание ( самолёта) ; режим срыва [сваливания]; вводить или попадать в режим срыва [сваливания]; сваливаться ( о самолёте) ; останавливаться)full landing configuration stall — срыв [сваливание] в посадочной конфигурации 1-g stall срыв [сваливание] в горизонтальном прямолинейном полете (с единичной перегрузкой)
go into a stall — входить [попадать] в режим срыва [сваливания]
go out of stall — выходить из режима срыва [сваливания]
put an airplane into a stall — вводить самолёт в режим срыва [сваливания]
slow down to stall — гасить скорость до срыва [сваливания]
stall due to gusts — срыв [сваливание] вследствие воздействия воздушных порывов
stall in level flight — срыв [сваливание] в горизонтальном полете
stall in the clean configuration — срыв [сваливание] с убранными механизацией и шасси
stall in the takeoff configuration — срыв [сваливание] во взлетной конфигурации (шасси выпущено, закрылки отклонены на взлетный угол)
stall with full flaps — срыв [сваливание] при полностью отклонённых закрылках [с полностью выпущенными закрылками]
stall with no flaps — срыв [сваливание] при неотклонённых закрылках [с убранными закрылками]
stall with partial flaps — срыв [сваливание] при частично отклонённых закрылках [с частично выпущенными закрылками]
top and bottom rudder stall — срыв [сваливание] на вираже при смене (действия) рулей
-
11 altitude
высота; высота светила; угол места; разг. высотомер; высотныйfinal approach fix altitude — конечная высота определения места по радиомаякам при заходе на посадку
sacrifice altitude for airspeed — использовать запас высоты для разгона, терять высоту для достижения необходимой скорости
trade altitude for airspeed — использовать запас высоты для разгона, терять высоту для достижения необходимой скорости
-
12 approach
приближение, подход; сближение; заход на посадку; приближение к срыву [к сваливанию]; метод ( исследования) ; подходить, приближать(ся); заходить на посадку180-degree overhead — заход на посадку над ВПП с разворотом на 180° перед приземлением
360-degree overhead approach — заход на посадку с разворотом на 360° над ВПП (со снижением по спирали)
6-degree final approach — заход на посадку по глиссаде с углом 6° к горизонту
approach on the deck — разг. выход на цель на минимальной высоте
approach to the throat of a nozzle — суживающаяся [докритическая] часть сопла
automatic direction finder approach — заход на посадку с использованием автоматического радиокомпаса
fully coupled automatic approach — автоматический заход на посадку по сигналам курсоглиссадной системы
simulated engine-out missed approach — имитация ухода на второй круг с одним неработающим двигателем
very high-frequency omnirange approach — заход на посадку по системе ВОР [с использованием маяков системы ВОР]
-
13 adjustment
1) регулировка, настройка2) выверка3) коррекция•- closed-loop power adjustment
- coarse adjustment
- color purity adjustment
- continuous adjustment
- country adjustment
- discrete adjustment
- error-feedback adjustment
- feedback adjustment
- fine adjustment
- frequency adjustment
- gross adjustment
- head azimuth adjustment
- head height adjustment
- initial adjustment
- language adjustment
- on-line adjustment
- open loop power adjustment
- peak-power-output adjustment
- phase adjustment
- power-factor adjustment
- recording level adjustment
- sensitivity adjustment
- signal level adjustment
- spring adjustment
- storing adjustment
- vernier adjustment
- white adjustment
- wrap adjustment
- yoke adjustment
- zenith adjustment
- zero adjustmentEnglish-Russian dictionary of telecommunications and their abbreviations > adjustment
-
14 plant
1) установка; оборудование2) агрегат; механизм; энергоблок3) завод, фабрика, мастерская5) озеленять, сажать•plant and machinery register — реестр машин и оборудования (напр. строительной компании)
plant for technical ceramics and verified ceramics — установка для производства технической керамики и металлокерамики
plant for the preparation and transport of mastic asphalt — установка для подготовки и транспортировки литого асфальта
- activated sludge plant - aggregate batching plant - air-conditioning plant - air-supply plant - arc welding plant - asphalt plant - asphalt-mixing plant - asphalt preparation plant - asphalt-recycling plant - assembling plant - atomic power plant - automated concrete-mixing plant - automatic plant - batch plant - batch concrete mixing plant - batching plant - batch-weighing plant - biological treatment plant - bitumastic macadam mixing plant - bitumen-melting plant - bitumen-pumping plant - boiler plant - brick plant - facing brick plant - roof tile plant - brick-making plant - builder's plant - calcining plant - cement plant - central boiler plant - central mixing plant - chlorination plant - clarification plant - clay-drying plant - clay souring plant - coal grinding plant - coating plant - combined milling and burning plant - combined photovolcanic-deolian electric plant - compressor plant - concrete-mixing plant - concreting plant - construction plant - contractor's plant - crushing plant - crushing and screening plant - curing plants for the concrete block and precast concrete part industry - cutting plant - degreasing plant - desalination plant - diesel-engine power plant - disinfection plant - district heating plant - drying plant - earth freezing plant - earth-moving plant - effluent treatment plant - electric power plant - expanded clay plant - filter plant - final-screening plant - finish coat stacking and dry mixing mortar plant - fixed plant - flash-calcining plant - floating pile-driving plant - flotation plant - fuel-burning power plant - garbage-disposal plant - gas-fired plant - gravel plant - grinding wheel plant - grit-removal plant - heating plant - high head plant - hoisting plant - hydroelectric power plant - industrial plant - iron removal plant - light plant - lime-slaking plant - lime softening plant - loading plant - low head hydroelectric plant - manganese removal plant - milling plant - mixing plant - mixing plant and pavers for hydraulically bound base courses - mobile compressor plant - mobile concrete mixing plant - mobile crushing plant - mobile rock crushing and screening plant - mortar-mixing plant - multiple-arc welding plant - municipal sewage treatment plant - nuclear power plant - orbital power plant - ozone plant - ozone-ventilating plant - piling plant - pilot plant - placing plant - plaster plant - pontoon pile driving plant - portable compressor plant for painting work - power plant - primary treatment plant - proportioning plant - pump plant - pumping plant - pumped storage plant - purification plant - quarry plant - ready-mix plant - refrigerating plant - reverse osmosis plant - sand washing plant - sanitary ware plant - porcelain plant - secondary treatment plant - sedimentation plant - semi-mobile plant - semi-portable plant - sewage disposal plant - sewage pumping plant - sewage purification plant - sewage treatment plant - sintering plant - soil-mixing plant - solar plant - spraying plant - standby plant - steam plant - step-up plant - stoneware plant - tertiary plant - thermal power plant - tidal plant - tile-making plant - timber drying plant - tower-type concrete-mixing plant - transformer welding plant - travel plant - travelling mixing plant - treating plant - treatment plant - utility plant - vacuum-cleaning plant - vibration-rolled concrete plant - wall and floor tiles plant - washing plant - waste water treatment plant - water power plant - water softening plant - water treatment plantplant for the production of concrete polymer construction elements — установка для изготовления элементов из полимерного бетона
* * *1. оборудование инженерных систем здания2. строительное оборудование (напр. землеройное, подъёмно-транспортное, для бетонных работ)3. установка; агрегат; энергоблок; технологическая установка [система] ( в инженерных системах зданий)4. электростанция5. завод, фабрика; мастерская- acetylene producing plant
- activated sludge plant
- aeration plant
- aeration-degassing plant
- aggregate batching plant
- aggregate preparation plant
- air conditioning plant
- air handling plant
- air supply plant
- all-dry cement plant
- all-wet cement plant
- augering plant
- automatic batching plant
- bank-filtered river water plant
- barge-mounted concrete plant
- batch plant
- batch mixing plant
- biological treatment plant
- block-making plant
- block plant
- boiler plant
- booster pumping plant
- builder's plant
- builder's small powered plant
- cement plant
- central plant
- central air conditioning plant
- central air-handling plant
- central boiler plant
- central heating plant
- central refrigerating plant
- chemical feed plant
- chlorination plant
- civil-engineering plant
- coating plant
- cold-storage plant
- compressor plant
- computerized plant
- concentrating plant
- concrete plant
- concrete production plant
- concrete spouting plant
- concreting plant
- construction plant
- contact stabilization plant
- continuous-mix plant
- conveying plant
- cooling plant
- crushing plant
- desalination plant
- desalting plant
- disposal plant
- diversion power plant
- drying plant
- dust arrestor plant
- dust extracting plant
- earth moving plant
- electric plant
- exhaust plant
- extended aeration plant
- filter plant
- filtration plant
- floating concrete plant
- floating pile-driving plant
- flotation plant
- freezing plant
- gas plant
- gas-distribution plant
- gas washing plant
- generating plant
- grading plant
- heat generation plant
- heating plant
- heating water converter plant
- high-pressure air conditioning plant
- hydro-electric plant
- incineration plant
- indoor power plant
- industrial plant
- initial screening and washing plant
- lime softening plant
- low-head power plant
- low-level mixing plant
- low-pressure air conditioning plant
- manufacturing plant
- mechanical plant
- mixing plant
- mix-in-travel plant
- municipal treatment plant
- open-air plant
- open-air water power plant
- ozone plant
- package plant
- petrochemical plant
- piling plant
- placing plant
- power plant
- precast concrete plant
- precast plant
- proportioning plant
- pumping plant
- purification plant
- pyrolysis plant
- ready mixed concrete plant
- refrigerating plant
- refuse incineration plant
- refuse processing plant
- reinforcement cutting and bending plant
- river-run power plant
- river power plant
- road-making plant
- roadstone aggregate plant
- roof top plant
- screening plant
- secondary treatment plant
- sedimentation plant
- semioutdoor-type power plant
- sewage dispersal plant
- site mechanical plant
- sludge digestion plant
- sludge treating plant
- small powered plant
- solar plant
- spouting plant
- steam plant
- steam-power plant
- step-up plant
- structural steel plant
- tertiary plant
- tidal power plant
- transporting plant
- treatment plant
- vacuum dewatering plant
- ventilation plant
- volumetric batch plant
- washing and screening plant
- waste-disposal plant
- waste-heat utilization plant
- water-catchment plant
- water conversion plant
- water purification plant
- water softening plant
- water treatment plant
- weight batch plant
- zeolite water softening plant -
15 condition
состояние; условие; режим ( работы) ; pl. условия; параметры; кондиционироватьbe in a hot condition — находиться под током, быть включенным [в рабочем состоянии]
c.g. condition — положение центра тяжести, центровка
high glide-slope standoff condition — условие [режим] полёта выше (заданной) глиссады
in solid IFR conditions — в условиях полного отсутствия видимости, в сплошных облаках
instrument (flight, meteorological) condition — условия полёта по приборам
low glide-slope standoff condition — условие [режим] полёта ниже (заданной) глиссады
simulated reentry heating conditions — имитированные [моделированные] условия нагрева при входе в атмосферу
simulated zero gravity conditions — имитированные [моделированные] условия невесомости
under no wind conditions — в штилевых условиях, в безветрие
visual flight rules weather conditions — метеорологические условия, допускающие полет с визуальной ориентировкой
-
16 plant
- plant
- n1. оборудование инженерных систем здания
2. строительное оборудование (напр. землеройное, подъёмно-транспортное, для бетонных работ)
3. установка; агрегат; энергоблок; технологическая установка [система] ( в инженерных системах зданий)
4. электростанция
5. завод, фабрика; мастерская
- acetylene producing plant
- activated sludge plant
- aeration plant
- aeration-degassing plant
- aggregate batching plant
- aggregate preparation plant
- air conditioning plant
- air handling plant
- air supply plant
- all-dry cement plant
- all-wet cement plant
- augering plant
- automatic batching plant
- bank-filtered river water plant
- barge-mounted concrete plant
- batch plant
- batch mixing plant
- biological treatment plant
- block-making plant
- block plant
- boiler plant
- booster pumping plant
- builder's plant
- builder's small powered plant
- cement plant
- central plant
- central air conditioning plant
- central air-handling plant
- central boiler plant
- central heating plant
- central refrigerating plant
- chemical feed plant
- chlorination plant
- civil-engineering plant
- coating plant
- cold-storage plant
- compressor plant
- computerized plant
- concentrating plant
- concrete plant
- concrete production plant
- concrete spouting plant
- concreting plant
- construction plant
- contact stabilization plant
- continuous-mix plant
- conveying plant
- cooling plant
- crushing plant
- desalination plant
- desalting plant
- disposal plant
- diversion power plant
- drying plant
- dust arrestor plant
- dust extracting plant
- earth moving plant
- electric plant
- exhaust plant
- extended aeration plant
- filter plant
- filtration plant
- floating concrete plant
- floating pile-driving plant
- flotation plant
- freezing plant
- gas plant
- gas-distribution plant
- gas washing plant
- generating plant
- grading plant
- heat generation plant
- heating plant
- heating water converter plant
- high-pressure air conditioning plant
- hydro-electric plant
- incineration plant
- indoor power plant
- industrial plant
- initial screening and washing plant
- lime softening plant
- low-head power plant
- low-level mixing plant
- low-pressure air conditioning plant
- manufacturing plant
- mechanical plant
- mixing plant
- mix-in-travel plant
- municipal treatment plant
- open-air plant
- open-air water power plant
- ozone plant
- package plant
- petrochemical plant
- piling plant
- placing plant
- power plant
- precast concrete plant
- precast plant
- proportioning plant
- pumping plant
- purification plant
- pyrolysis plant
- ready mixed concrete plant
- refrigerating plant
- refuse incineration plant
- refuse processing plant
- reinforcement cutting and bending plant
- river-run power plant
- river power plant
- road-making plant
- roadstone aggregate plant
- roof top plant
- screening plant
- secondary treatment plant
- sedimentation plant
- semioutdoor-type power plant
- sewage dispersal plant
- site mechanical plant
- sludge digestion plant
- sludge treating plant
- small powered plant
- solar plant
- spouting plant
- steam plant
- steam-power plant
- step-up plant
- structural steel plant
- tertiary plant
- tidal power plant
- transporting plant
- treatment plant
- vacuum dewatering plant
- ventilation plant
- volumetric batch plant
- washing and screening plant
- waste-disposal plant
- waste-heat utilization plant
- water-catchment plant
- water conversion plant
- water purification plant
- water softening plant
- water treatment plant
- weight batch plant
- zeolite water softening plant
Англо-русский строительный словарь. — М.: Русский Язык. С.Н.Корчемкина, С.К.Кашкина, С.В.Курбатова. 1995.
-
17 operation
2. применение авиации (напр. в сельском хозяйстве)3. эксплуатация (напр. воздушного судна)4. управление (напр. авиакомпанией)5. действие; операция; работа; срабатывание6. pl. производство полётов; воздушные перевозки"see and avoid" operations — действия по обнаружению и уходу (от препятствия)
associated fire control operation — противопожарное патрулирование по пути выполнения основного задания
ICAO category I [II, III] operations — выполнение [производство] полётов по I-й [II-й, III-й] категории ИКАО
instrument flight rules operation — полёт по приборам, «слепой» полёт
2. приступать к выполнению полётаto come into operation — 1. вводить в эксплуатацию
2. управлять полётомto govern the operation — 1. руководить эксплуатацией
to im- pair the operation — нарушать работу (напр. бортовых систем)
2. приводить в действие;to put in(to) operation — 1. вводить в эксплуатацию
— asymmetrical flaps operation— from landing operations— hovering operation— in operation— passenger-carrying operations— solo supervised operation— to cancel operation— to provide operation -
18 operation
operation nполетabnormal operationsособые случаи выполнения полетовaborted operationпрерванный полетaccidental operationсамопроизвольное срабатываниеaccident-free operationбезаварийная эксплуатацияacrobatics operationвыполнение фигур высшего пилотажаaerial ambulance operationполет для оказания медицинской помощиaerial photography operationаэрофотосъемкаaerial spotting operationполет с целью установления координат объекта поискаaerial survey operationполет для выполнения наблюдений с воздухаaerial work operationполет для выполнения работaerodrome operationэксплуатация аэродромаaerodrome traffic circuit operationполет по кругу в районе аэродромаaerodrome vehicle operationэксплуатация аэродромных транспортных средствaffect flight operationспособствовать выполнению полетаaircraft operationэксплуатация воздушного суднаair operation for hireвоздушная перевозка по наймуair operation for remunerationвоздушная перевозка за платуairport facilities operationэксплуатация оборудования аэропортаair transport operationsавиатранспортные перевозкиall-freight operationsгрузовые перевозкиall-weather operationsвсепогодные полетыall-weather operations programпрограмма всепогодных полетовapproach operationзаход на посадкуassociated crop control operationконтроль состояния посевов по пути выполнения основного заданияassociated fire control operationпротивопожарное патрулирование по пути выполнения основного заданияasymmetric flaps operationнесимметрическая работа закрылковattempted operationопытная эксплуатацияauthorized operationразрешенный полетautorotative descend operationснижение на режиме авторотацииavailable for daylight operationпригодный для полета только в светлое время сутокaviation operationsавиационные перевозкиbase leg operationполет на участке между третьим и четвертым разворотамиbusiness operationадминистративный полетcancel operationотменять полетcargo operationsгрузовые перевозкиcattle roundup operationоблет стадаcentralized operationsцентрализованные перевозкиcivil air operationsполеты гражданских воздушных судовclimb to cruise operationнабор высоты до крейсерского режимаcome into operationвводить в эксплуатациюcommercial air transport operationsкоммерческие воздушные перевозкиcommercial operationкоммерческий полетcommunications operationведение связиconstruction work operationsстроительные работы с помощью авиацииcrop control operationполет для контроля состояния посевов с воздухаcross-band operationработа на смежных диапазонахcut-off engine operationпорядок выключения двигателяdaylight operationsполеты в светлое время сутокdeficit operationsубыточные перевозкиdemonstration operationдемонстрационный полетdeparture operationsоперации по подготовке рейса к вылетуdescending operationполет со снижениемdiverted attention from operationвнимание, отвлеченное от управления воздушным судномdomestic operationsвнутренние перевозкиdual operationполет с инструкторомemergency descent operationаварийное снижениеemergency operations serviceаварийная службаengage in aircraft operationэксплуатировать воздушное судноengine run-up operationопробование двигателяen-route operationполет по маршрутуexcess operationsприбыльные перевозкиexperimental operationэкспериментальный полетferry operationперегоночный полетField Operation BranchОтдел осуществления проектов на местахField Operations SectionСекция осуществления проектов на местах(ИКАО) final approach operationполет на конечном этапе захода на посадкуfire control operationпротивопожарное патрулирование с воздухаflight operationвыполнение полетовflight operations expertэксперт по производству налетовflight operations instructorинструктор по производству полетовflight operations personnelперсонал по обеспечению полетовflight operations systemсистема обеспечения полетовfog dispersal operationоперация по рассеиванию туманаfrequency of operationsчастота полетовfrom landing operationsдействия после посадкиgeneral aviation operationsполеты авиации общего назначенияgo-around operationsдействия при уходе на второй кругgovern the operationруководить эксплуатациейground handling operationназемное обслуживание рейсовground operationназемная эксплуатацияground taxi from landing operationруление после посадкиground taxi operationруление по аэродромуhigh-level operationsполеты на высоких эшелонахholding en-route operationполет в режиме ожидания на маршрутеholding operationполет в режиме ожиданияhover operationвисениеidling engine operationработа двигателя на режиме малого газаimpair the operationнарушать работуimproper operationнеправильная эксплуатацияin operationв эксплуатациюinstructional operationучебный полетinstrument flight rules operationполет по приборамintermediate approach operationвыполнение промежуточного этапа захода на посадкуinternational operationsмеждународные перевозкиitinerant operationцелевой полетlanding operationпосадкаlanding roll operationпробегlevel-off operationвыравниваниеlocal operationsвнутренние полетыlong final straight-in-approach operationконечный удлиненный заход на посадку с прямойlow flying operationполет на малой высотеlow weather operationsполеты по низким метеоминимумамmaintenance operationsработы по техническому обслуживаниюmake an operation hazardousсоздавать опасность полетуmissed approach operationуход на второй круг с этапа захода на посадкуnight operationsполеты в темное время сутокno-failure operationбезотказная работаno-load operationхолостой ходnoncommercial operationsнекоммерческие перевозкиnonscheduled operationsнерегулярные перевозкиnormal cruise operationполет на крейсерском режимеnormal initial climb operationнабор высоты на начальном участке установленной траекторииnormal weather operationполет в нормальных метеоусловияхoff-shore operationsполеты в районе открытого моряoperation conditionsэксплуатационный режимoperation instructionинструкция по производству полетовoperation of aircraftэксплуатация воздушного суднаoperation phaseэтап полетаoperation regulationsправила эксплуатацииoperations divisionслужба перевозокoperations inspectorинспектор по производству полетовoperations towerпункт управления полетамиoperation testsэксплуатационные испытанияoperation time limitмаксимально допустимое время работыoverload operationэксплуатация с перегрузкойoverwater operationполет над водным пространствомparalleled operationпараллельная работаpart time operationsвременные полетыpassenger operationsпассажирские воздушные перевозкиpermission for operationразрешение на выполнение полетаpleasure operationпрогулочный полетpooled operationsпульные перевозкиpositioning operationперебазированиеpower-on descend operationснижение с работающими двигателямиpower patrol operationпатрулирование линий электропередач с воздухаpower reduction operationуменьшение мощностиpractice operationтренировочный полетpremature operationпреждевременное срабатываниеprivate operationsчастные перевозкиprovide operationобеспечивать эксплуатациюput in operationвводить в эксплуатациюregularity of operationsрегулярность полетовrescue operationsоперации по спасениюrestrict the operationsнакладывать ограничения на полетыresume normal operationsвозобновлять полетыroll-on operationпробегrotorcraft operationsвоздушные перевозки вертолетомrough engine operationsперебои в работе двигателяrtouble-free operationбезотказная работаrun-down engine operationвыбег двигателяrun-on operationпробегrun operationразбегsafe operationбезопасная эксплуатацияsearch and rescue operationsпоисково-спасательные работыsearch operationпоисковый полетsee and avoid operationsдействия по обнаружению и уходуsequence of operationпоследовательность выполнения операцийsolo operationсамостоятельный полетstanding operationобслуживание в процессе стоянкиstarting engine operationзапуск двигателяsymmetric flap operationсимметричная работа закрылковtakeoff operationвыполнение взлетаtaxing operationрулениеtest operationиспытательный полетtouchdown operationsдействия в момент касания ВППtraining operationтренировочный полетturn-around operationполет туда-обратноunauthorized operationнеразрешенный полетuncontrolled descent operationнеуправляемое снижениеunparalleled operationнепараллельная работаvertical rotocraft operationвертикальный взлет вертолета -
19 operation
операция; кампания; боевые [военные] действия; бой; сражение; эксплуатация; обслуживание; работа; pl. оперативное управление [отдел, отделение]; см. тж. action, battle, combatcounter C3 operation — операция [действия] против систем руководства, управления и связи [оперативного управления и связи]
counternaval forces naval operation (in closed or open offshore areas) — морская операция по разгрому ВМС противника (в закрытых или прилегающих к побережью открытых морских районах)
— breaching operation— exploitation-type operation— guarding security operations— missile operations— tactical operations— urban ized operations* * * -
20 N+1
- принцип резервирования N+1
принцип резервирования N+1
Системы бесперебойного электроитания (СБЭ), использующие принцип резервирования N+1, представляют собой системы с так называемым "горячим" (т. е. находящимся под нагрузкой) резервом.
[А. Воробьев. Классификация ИБП http://www.osp.ru/lan/2003/10/138056/ с изменениями]EN
N+1 redundancy
A redundant method based on one module more than needed to fulfill the required performance. For instance, three parallel systems, each rated 2KVA, form a 2+1 redundant system for a 4KVA consumer. Failure of a single UPS will not affect systems operational performance.
[ http://www.upsonnet.com/UPS-Glossary/]Параллельные тексты EN-RU
N+X redundancy
Load remains secure in the event of a module failure.
One Ensuring a high level of availability while reducing the initial investment.
(N+1) or more (N+X) redundant modules could be added to the system
[GUTOR Electronic LLC]Резервирование по принципу N+X
Электропитание нагрузки в случае выхода модуля из строя не прерывается.
Обеспечивается высокий уровень эксплуатационной готовности при сокращении первоначальных затрат.
В системе может быть один (резервирование по принципу N+1) или Х (резервирование по принципу N+X) резервных модулей.
[Перевод Интент]N + 1 Redundancy ensures maximum uptime and continuous availability
Резервирование по принципу N + 1 минимизирует время простоя и обеспечивает постоянную готовность оборудования
Symmetra Power Array achieves N+1 redundancy and higher through proven power sharing technology.
Power sharing means that all of the power modules in a Power Array run in parallel and share the load evenly.
N+1 redundancy means running one extra module than will support your full load.
В ИБП семейства Symmetra Power Аггау резервирование по принципу N+1 или с более высокой избыточностью реализуется на основе проверенной практикой технологии распределения нагрузки.
Все модули электропитания работают параллельно и несут одинаковую нагрузку.
Резервирование по принципу N+1 означает, что число модулей электропитания превышает на 1 необходимое для питания защищаемых устройств при их работе на максимальную мощность.In this way, all of the modules support one another.
Таким образом, каждый модуль подстраховывает другие модули
For example, if your computer load is 15kVA, you achieve N+1 with five 4kVA Power Modules.
Например, если максимальная потребляемая мощность компьютерной системы составляет 15 кВА, то для резервирования по принципу N+1 требуется пять модулей электропитания по 4 кВА каждый.
If a module fails or is removed, the other modules instantaneously begin supporting the full load.
It does not matter which module fails because all of the modules are always running and supporting your load.В случае аварии или отключения одного из модулей нагрузка мгновенно перераспределяется на остальные модули.
Не имеет значения, какой именно из модулей прекратит работу - каждый одновременно выполняет функции и основного и резервного.Тематики
EN
- N+1
- N+1 configurability
- N+1 redundancy
- need plus one
Англо-русский словарь нормативно-технической терминологии > N+1
См. также в других словарях:
Power optimization (EDA) — Power optimization refers to the use of electronic design automation tools to optimize (reduce) the power consumption of a digital design, while preserving the functionality.Introduction and historyThe increasing speed and complexity of today’s… … Wikipedia
Level 7 — is a 1959 science fiction novel by the American writer Mordecai Roshwald. It is told from the first person perspective (diary) of a modern soldier X 127 living in the underground military complex Level 7, where he was expected to reside… … Wikipedia
Power outage — A power outage (also known as power cut , power failure , power loss , or blackout ) is the loss of the electricity supply to an area.The reasons for a power failure can for instance be a defect in a power station, damage to a power line or other … Wikipedia
Level 42 — Infobox musical artist 2 Name = Level 42 Img capt = Level 42 in 1988: The Late Alan Murphy (Guitar), Mike Lindup (Keyboards/Vocals), Mark King (Bass/Vocals), Gary Husband (Drums). Background = group or band Origin = Isle of Wight, England… … Wikipedia
Power Macintosh G3 — Infobox Computer name = Power Macintosh G3 (Beige) developer = Apple Computer, Inc. type = Desktop photo = caption = The beige Power Macintosh G3 minitower first release date = November, 1997 discontinuation date = January, 1999 processor =… … Wikipedia
Audio power — Sound measurements Sound pressure p, SPL Particle velocity v, SVL Particle displacement ξ Sound intensity I, SIL Sound power Pac Sound power level SWL Sound energy Sound energy density … Wikipedia
Solar power satellite — A solar power satellite, or SPS or Powersat, as originally proposed would be a satellite built in high Earth orbit that uses microwave power transmission to beam solar power to a very large antenna on Earth. Advantages of placing the solar… … Wikipedia
Smart power grid — Smart Grid is a transformed electricity transmission and distribution network or grid that uses robust two way communications, advanced sensors, and distributed computers to improve the efficiency, reliability and safety of power delivery and use … Wikipedia
Space-based solar power — Left: Part of the solar energy is lost on its way through the atmosphere by the effects of reflection and absorption. Right: Space based solar power systems convert sunlight to microwaves outside the atmosphere, avoiding these losses, and the… … Wikipedia
One Power — In The Wheel of Time fantasy series by Robert Jordan, the One Power is the force that maintains the continuous motion of the Wheel of Time. It comes from the True Source, and it is separated into two halves: saidin /saɪˈd … Wikipedia
List of Initial D characters and teams — This is a list of characters from the anime and manga series Initial D. Contents 1 Main characters (Fujiwara Tofu Shop) 1.1 Takumi Fujiwara 1.2 Bunta Fujiwara 2 Projec … Wikipedia